Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sibel Demir, ${ }^{\text {a }}$ Muharrem Dinçer, ${ }^{\text {a }}$ Alaaddin Çukurovalı ${ }^{\text {b }}$ and Ibrahim Yılmaz ${ }^{\text {c }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ${ }^{\mathbf{b}}$ Fırat University, Arts and Sciences Faculty, Department of Chemistry, 23119-Elazığ, Turkey, and ${ }^{\text {c }}$ Fırat University, Arts and Sciences Faculty, Department of Chemistry, 23119 Elazığ, Turkey

Correspondence e-mail: sibeld@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.070$
$w R$ factor $=0.195$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Chloro-1-(3-mesityl-3-methylcyclobutyl)ethanone

The title compound, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClO}$, has a non-planar configuration. The crystal packing is mainly stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

Received 1 December 2005 Accepted 12 December 2005 Online 21 December 2005

Comment

It has been shown that 3-substituted cyclobutane carboxylic acid derivatives have antidepressant activities and liquidcrystal properties (Dehmlow \& Schmidt, 1990; Escaler et al., 1977). Substituted α-haloketones, like the title compound, (I), are used for different purposes, especially in the synthesis of heterocyclic substances (Çukurovalı et al., 2002; Gompper \& Christmann, 1959). The extensive synthetic possibilities of this compound, due to the presence of various reaction sites, hold promise for the preparation of new heterocyclic chemicals.

Fig. 1 shows the molecular structure and conformation of (I) with the atomic numbering scheme. Selected bond lengths and angles in (I) are given in Table 1 . In cyclobutane ring $A(\mathrm{C} 1-$ C4), the puckering parameter Q_{2} is -0.228 (2) \AA (Cremer \& Pople, 1975). In this study, the $\mathrm{C} 4 / \mathrm{C} 1 / \mathrm{C} 2$ plane forms a dihedral angle of $23.8(3)^{\circ}$ with the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ plane, which deviates from the values reported in previous studies (Swenson et al., 1997; Yüksektepe et al., 2004). The geometry of the cyclobutane ring is influenced by the steric effect of the methyl group. The bond lengths and angles in the four-membered ring

Figure 1
An ORTEP3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level. The minor occupancy disordered atoms have been omitted.

Figure 2
A projection of the molecular packing of (I) approximately along the a axis. The minor occupancy disordered atoms have been omitted.
are normal (Allen et al., 1987). The chloroacetaldehyde group shows disorder and atoms $\mathrm{C} 15, \mathrm{C} 16, \mathrm{O} 1$ and Cl 1 were modelled in two different orientations, with occupancy factors of 0.61 (2) for atoms with suffix A and 0.39 (2) for those with suffix B (Fig. 1).

Experimental

The synthesis of the title compound was realised according to the literature method of Akhmedov et al. (1991) with some modification, as given in the reaction scheme. Shiny crystals suitable for X-ray analysis were obtained by crystallization from ethanol (yield: 80%, m.p. 366 K). IR ($\mathrm{KBr}, v \mathrm{~cm}^{-1}$): $1724(\mathrm{C}=\mathrm{O})$, $732\left(-\mathrm{CH}_{2}-\mathrm{Cl}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.63\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ on cyclobutane), $2.22(s, 3 \mathrm{H}, p$ CH_{3} on mesitylene), 2.25 ($s, 6 \mathrm{H}, o-\mathrm{CH}_{3}$ on mesitylene), 2.42-2.78 (m , $\left.4 \mathrm{H},-\mathrm{CH}_{2}-\right), 6.80\left(s, 2 \mathrm{H}\right.$, aromatics on mesitylene). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{6}\right): \delta 48.88\left(\mathrm{C}_{1}\right), 205.47\left(\mathrm{C}_{2}\right), 41.89\left(\mathrm{C}_{3}\right), 42.59\left(\mathrm{C}_{4}\right), 26.95\left(\mathrm{C}_{5}\right)$, $40.19\left(\mathrm{C}_{6}\right), 145.09\left(\mathrm{C}_{7}\right), 132.48\left(\mathrm{C}_{8}\right), 132.44\left(\mathrm{C}_{9}\right), 136.96\left(\mathrm{C}_{10}\right), 22.46$ $\left(\mathrm{C}_{11}\right), 23.37\left(\mathrm{C}_{12}\right)$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClO}$

$M_{r}=264.78$
Monoclinic, $P 2_{1} / c$
$a=8.3808$ (17) A
$b=15.236$ (4) \AA
$c=12.472$ (3) \AA
$\beta=112.173(15)^{\circ}$
$V=1474.8$ (6) \AA^{3}
$Z=4$

$D_{x}=1.192 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 26744 reflections
$\theta=2.2-27.9^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colourless
$0.73 \times 0.57 \times 0.37 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.841, T_{\text {max }}=0.914$
23037 measured reflections
3378 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.195$
$S=0.96$
3378 reflections
197 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1242 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cl} 1 A-\mathrm{C} 16 A$	$1.807(12)$	$\mathrm{O} 1 A-\mathrm{C} 15 A$	$1.187(16)$
$\mathrm{Cl} 1 B-\mathrm{C} 16 B$	$1.68(2)$	$\mathrm{O} 1 B-\mathrm{C} 15 B$	$1.22(2)$
$\mathrm{O} 1 A-\mathrm{C} 15 A-\mathrm{C} 2$	$121.2(11)$	$\mathrm{O} 1 B-\mathrm{C} 15 B-\mathrm{C} 2$	$125.8(18)$
$\mathrm{O} 1 A-\mathrm{C} 15 A-\mathrm{C} 16 A$	$126.3(12)$	$\mathrm{Cl} 1 A-\mathrm{C} 16 A-\mathrm{C} 15 A$	$113.5(8)$
$\mathrm{O} 1 B-\mathrm{C} 15 B-\mathrm{C} 16 B$	$115.3(18)$	$\mathrm{Cl} 1 B-\mathrm{C} 16 B-\mathrm{C} 15 B$	$113.8(13)$

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at $0.93,0.96,0.97$ and $0.98 \AA$ for aromatic, methyl, methylene and methine H atoms, respectively. The displacement parameters of the H atoms were constrained to be $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This study was supported financially by the Research Centre of Ondokuz Mayıs University (project No. F-276).

References

Akhmedov, M. A., Sardarov, I. K., Akhmedov, I. M., Kostikov, R. R., Kisin, A. V. \& Babaev, N. M. (1991). Zh. Org. Khim. 27, 1434-1440 (in Russian); Chem. Abstr. (1992), 116, 807.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Çukurovalı, A., Yılmaz, I., Özmen, H. \& Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.
Dehmlow, E. V. \& Schmidt, S. S. (1990). Liebigs Ann. Chem. pp. 411-414.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gompper, R. \& Christmann, O. (1959). Chem. Ber. 92, 1994-1998.
Roger, E., Pierre, C. J., Pualette, V., Gerard, G., Chepat, J. P. \& Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. 12, 501-509.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Swenson, D. C., Yamamoto, M. \& Burton, D. J. (1997). Acta Cryst. C53, 14451447.

Yüksektepe, Ç., Saraçoğlu, H., Koca, M., Çukurovalı, A. \& Çalışkan, N. (2004). Acta Cryst. C60, o509-o510.

[^0]: (C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

